
J. Quant. Spectrosc. Radiat. Transfer Vol 42, No. 6, pp. 615-630, 1989 0022-4073/89 $3.00+0.00 
Printed in Great Britain Pergamon Press plc 

T H E  E F F E C T  O F  T H E  H O T  S P O T  O N  T H E  T R A N S P O R T  

E Q U A T I O N  I N  P L A N T  C A N O P I E S  

A .  L. MARSHAK 
Institute of Astrophysics and Atmospheric Physics, Estonian Academy of Sciences, Tartu, 

Toravere 202444, U.S.S.R. 

(Received 8 November 1988; received for publication 6 June 1989) 

Abstract--The governing equation for photon transport in plant canopies is discussed. The 
specular component of leaf reflectance comprising the presence of the leaf-wax layer is 
introduced. The scattering phase function is derived for this case. By separating the first-order 
scattering into an independent problem, the leaf size is taken into account in obtaining the 
hot-spot effect of the canopy. The correlation function characterizing the probability that a 
point inside the canopy or on the soil is seen from two directions is considered. Numerical 
results for the transport equation obtained by the method of discrete ordinates are compared 
with those obtained by using the Monte Carlo method and experimental data. 

1. I N T R O D U C T I O N  

By the beginning of  the 1960s, scientists had come very close to a mathematical description of  the 
radiative regime in the plant canopy. The future development of  this subject demands the 
construction of  an adequate model of  photon transfer in the canopy. The theory of  radiative 
transfer in a turbid medium has been sufficiently well developed to solve problems arising in 
astrophysics, nuclear physics and atmospheric physics. 1-5 

Development of a model for radiative transfer in the canopy has been discussed by Ross and 
his colleagues. 6 These authors have described the main mathematical characteristics of  radiative 
transfer, e.g., the mean projection of  a unit foliage area on the propagation direction and the 
scattering phase function of  the canopy. They have also derived the transport equation for the plate 
medium and determined the possible ways of  its solutions. Because of  the presence of  the oriented 
plates, there are some essential differences between the transport equation in the plate and in turbid 
media. The main differences are the following: (i) the phase function is not rotationally invariant; 
(ii) the extinction coefficient is not necessarily independent of  the direction of  photon travel. In 
some cases the first difference makes the solution of the governing equation much more 
complicated. 

Recently, papers by Myneni 7'8 and his colleagues have provided new impetus to the development 
of  the theory of radiative transfer in vegetation canopies. In Refs. 7 and 8, they have described 
the transport equation more accurately and have adapted the method of  discrete ordinates in 
solving the equation. Various numerical results have shown good agreement between solutions of 
the transport equation and measured results. 

However, it is, in principle, impossible to consider such important canopy parameters as leaf and 
stem dimensions, the effective distances between neighbouring leaves, the non-random distribution 
of  leaves, the azimuthal angle between successive leaves on the genetic spiral, etc. in the transport 
equation in a turbid medium. The Monte Carlo method proposed by Ross and Marshak 9:° allows 
us to take the influences of  these parameters into account in the canopy bidirectional reflectance 
distribution function (see also the three-dimensional model of  Kimes and Kirchner 11 ). As a matter 
of  fact, the Monte Carlo models are rather complicated and have serious disadvantages in 
inversion. 

The approximation model of  Nilson and Kuusk 12:3 also involves consideration of  such an 
important parameter as leaf size by means of  simple analytical formulae. It allows us to obtain 
and study the effect of leaf size on the hot spot. Their model is also easily reversible 13 but the 
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contribution of multiple scattering is calculated approximately according to the Schwarzschild 
approximation. 6 

The aim of the present paper is to introduce consideration of the canopy hot spot into the model 
of the radiative regime described by the transport equation. By separating the calculation of 
first-order scattering in the original problem, we change the extinction function by taking into 
account the sizes of leaves (plates) and by using the correlation function introduced by Nilson and 
KuuskY We then add the specular component of leaf reflection that allows us to describe 
reflectance from the leaf surface more adequately/°'13-~5 

In Sec. 2, we consider the transport equation in vegetation canopies and, in Sec. 3, we discuss 
the boundary conditions using results obtained by Gerstl and Zardecki) 6 Section 4 deals with 
separation of first-order scattering and consideration of the size of plates needed to obtain the 
hot-spot effect. For uniform azimuthal orientation of leaves in the canopy, the transport equation 
is considerably simplified and we are able to decrease the dimensions of the problem (Sec. 5). In 
Sec. 6, we discuss the numerical results for a variety of agricultural canopies and compare these 
with the results of calculations using the Monte Carlo method l° and with measured results. In the 
Appendix, we present mathematical results showing the conditions under which the problem has 
a unique solution. 

2. TRANSPORT EQUATION IN THE PLANT CANOPY 

We consider the radiative transfer equation in a flat, horizontal medium for a plane-parallel slab 
of depth T, the upper surface of which is illuminated by diffuse and direct radiation. We follow 
the notation of Ref. 7. For simplicity, we assume that the distribution of plate orientations does 
not depend on the height. We then write the transport equation in terms of the radiance distribution 
function I as follows: 6' 7 

+ G(ii)l(z, Il) = (l/n) f I(z, ~ ')F(ii '  ~ i l )  dil', (1) f l)/Sz] 
34 

where the unit vector Il = Il (/a, ~b) has an azimuthal angle ~b and a polar angle 0 = cos-~ (/~) with 
respect to the outward normal directed opposite to the z-axis. Here, 0 ~< z ~< H denotes an analogue 
to the optical depth, viz. 

f; fo z(z) = UL(Z') dz', H = r(T) = UL(Z') dz', 

and UL(Z) is the vertical distribution of the total one-sided leaf area per unit volume of the canopy 
at the depth z. The function G(il) is the mean projection of a unit foliage area in the direction 
II, i.e. 

G(il) = (1/2r0 [ gL(ilL)lilL'ill dill  (2) 
d2 n+ 

and gL(ilL) is the probability density [(1/2n) $2~+ gL(ilL) dilL = 1] of the distribution of the leaf 
normals with respect to the upper hemisphere. 6 Here, 2n + and 2 n -  are the upper and lower 
hemispheres, respectively. The area scattering phase function F is given by 

F (ii' --* Il) = (1/2) ~ gL (ilL) I II'" IlL I f ( i i '  --' II, IlL) dil, (3) 
32 n+ 

where f i s  the leaf-scattering distribution-function. The following simple optical model of the leaf 
is proposed: the transmission is isotropic and characterized by a diffuse spectral function tL(a'). 
The reflection consists of two components: a diffuse spectral function rL(a') and a specular 
component. Here, a' = Il'. IlL is the cosine of the angle between the incident ray Il' and the leaf 
normal I l L "  Thus, 

f ( i l '  + i i ,  IlL) =fo(ii'-'*ii, IlL) +f~p(il' + i i ,  ILL)' (4) 
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We hypothesize that diffuse scattering from the leaves follows the bi-Lambertian scattering model, 
viz. 

frL (~')1 ~ I/~, 
fD (i')' ~ f i ,  l'l L) = [ tL (0t') I ~ I/~, 

0tot' < 0, 

~t0t' > 0,  

where 

r D  (g'~' --~ f~) = ~ + gL (~'~L)tL (g')Gt 'Gt d~'~ L - -  ~ _ gL (f~L)rL (t2 ' ) g ' g  d~') L . 

with • = f~. f~L. In other words, the functions r L and t L define the radii of hemispheres that depend 
on the angle between f~' and f~L. We can show that 

f4 fD( f~' --}fl, fiE) d~  = rL(~' ) + tL(~t'). (5) 
/ t  

The specular component of reflection is determined by the presence of the wax layer on the leaf 
surface and it depends on the following three factors: t4 ~', wax refractive index n, and the 
smoothness of the leaf surface. Hence, we can define f~p as 

f~p (fl' --> 1), flL) = K(k, a')F(n, a')fz(fi-fl*). (6) 

We will now examine the last equality. The function F is the intensity of the refracted ray defined 
by Fresnel's law, i.e. 

= 1 [sin2(j - i) tan2(j - i ) ]  
F(n, ~') 2 [sin2(j ~ i) + t a n : ( j - ~ 0  ' 

where j = cos-~(l~'l), i =  sin-l(v/]  - -  (~')2/n). The function K defines the roughness of the leaf 
surface i4 (0 ~< K ~< 1) and the argument k >t 0 characterizes the surface. The function 62 is a surface 
delta-function: 5 

62(f~'f~')=0, f~#f~ ' ,  [ q(f~)f2(f~'~')df~=q(f~'). 
.)4 ~t 

The vector fl* = f2*(fl', fiE) defines the direction of specular reflection. Integration of Eq. (6) leads 
to 

f4 fsp(~'~' ""# ~'~, f~L) dfi = K(k, ct')F(n, ~t'). (7) 
/ t  

Combination of Eqs. (5) and (6) yields 

faf(fl" ~ fl, ilL) dfi = rL(~t') + ') + ot')F(n, tL(Qt K(k, or'). (8) 

We now return to the scattering phase function F. Taking into account Eq. (4), it follows from 
Eq. (3) that 

F (fl' --} Q) = FD (f~' --' f~) + Fsp (f~' --' fl), (9) 
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Here, f~+ is a part of  the hemisphere for which +~t'~t > 0, ~t '= f~'.f2L, ~ = D. f l  L. TO obtain F s p  , 

we note that ~4 d~ '2  L = df~*/41 f2"f~LI. Then 

Fsp (f~' --* ~)  = 2 gL (f~L)I ~ '  "~LI K( k, ~ '"  ~L)F( n, f~'" ~L)~2 [~" D*( f~', ~')L)] d~L 
n +  

= -~ gL(~L)K(k ,  D' "~L)F(n, ~"~' • ~"~L)~2(~"~ ' f~*) d~e'~ * 

1 
= ~ gL (~"~)g(k,  ~'~'" ~')~ )F(n, f~" f~*), 

where fl* = t)* (fl', f~) defines the direction of  the appropriate leaf normal for specular scattering 
between the incident and the reflected rays. It is not difficult to show t~ that fl* ,,- (#*, ~*) ,  where 

~,*= 
x/2(1 -- f~.~,) ' 

tan ~* = ~/[1 - (/1') 2] sin ~b' - x / ~  -/~2) sin q~ 

x/j1 _ (/~,)21 cos ~b' -- X /~  --/~2) COS q~" 

It is evident that F~p is symmetrical. However, for symmetry of FD, it is sufficient to require 
constancy of  the reflection and transmission functions, i.e. 

rL(~ ' )~rL,  tL(~ ' )~ tL.  (10) 

Then 

r ( n ' - , ~ )  = r ( n - - , n ' ) .  (11) 

The theorem of  optical reciprocity is valid if 4 

r ( n ' ~ )  = r ( - ~ ' - - , - ~ )  

holds. However, this condition will hold if the functions K, r L and l L are even, i.e., 
K(k ,  o 0 = K(k ,  -o~ ), rL(00 = rL(--~), tL(~) = /'L(--0~). 

Using the analogy of  Ref. 7, we determine a normalized scattering phase function. Taking into 
account Eqs. (3) and (8), we obtain (1/4rr)$4~ P(f[--* f~ )d l )=  1, where 

P (~ '  ~ ~ )  = 4F (D" ~ D)I[G, (f~') + G2 (03] 

and 

G 1 (f~') = ~ ~+ gL(~L)IO~'I [rL(~') + /L(0~')] d~L, (12) 

G2 (fl') = ~ , + gL (flL) I Ct' I K(k ,  ~')F(n,  ct ') df~L. 03)  

3. THE B O U N D A R Y  C O N D I T I O N S  

Equation (1) alone does not provide an adequate description of  the transfer process. It is also 
necessary to specify the incident radiation at the canopy boundaries, i.e., to set up the applicable 
boundary conditions. Depending on the aim of  investigations, different boundary conditions 
apply. J6't 7 
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3.1. Problem A: transfer of  radiation in the atmosphere adjoining the canopy 

Let H0 be the optical depth of the atmosphere. In this case, we obtain the following boundary 
conditions: 

/ ( -  n0, fl) = hi0,5 (n  - fl0), /~<0, 

I (0 'Q)=(1 / r0 f23-  I/~'IR(Q',Q)I(0,tT)df~', / ,>0 .  

Here, f~ ~ (~0, 4~0) is the direction of the monodirectional solar radiation, I0 is its intensity and 
R(fV, Q) is a canopy reflectance function. 

3.2. Problem B: the canopy is considered to be an independent layer 

There is now no interaction between the canopy and the atmosphere. Then 

I(0, f~) = F(t)), U < 0, (14) 

I(n,f~) = ( 1 / r 0 f  /~(Q ' , t%tu ' l I (n ,  tT)dfl ' ,  ~ >0 .  (15) 
,/2 3 -  

T h e  last condition describes reflection from the soil) 7 For Lambertian reflectance from the soil, 
Rs(Q', t)) = Rs = constant and 

I(H, Q) = (Rs/n) f [Iz'l I(H, D') dfl', ~ > O. 
.12 g -  

The equality (14) leads to two practically useful problems. 
3.2.I. Problem BI: the function R(tT, fl) for canopy reflection for Problem A. In this case, 

F(i)) = n6(Q - f~'), /~ < 0. 

Solving now the transport equation with the boundary conditions (1 4), (1 5) for each Q', we obtain 
the distribution of the intensity for the plant canopy-function I(z, fl). Hence, t7 

R(tT, Q)=nI(O,~)/Iu'I ,  /~ '<0,  /~>0. 

3.2.2. Problem B2: the distribution I(z, f~) of  the radiative intensity in the plant canopy i f  the 
incident radiation is weakened and scattered by the atmosphere. For this condition, we can define 
the function F by the expression 

F(Q) = Io(fl) + nlo exp ( -  Ho/l l~ol )6(D - f'zo), I~ <0,  (16) 

where ID is the diffuse solar radiance. 

3.3. Problem C: a two-layer problem with the atmosphere reflecting radiation 

A photon that has escaped from the canopy can return as the result of interaction with the 
atmosphere. In this case, only the first boundary condition (14) is changed: 

R a (iT, Q) I/z '1 I(0, fV) dt)" + ID (t)) + nlo exp( -- n 0 / j/to I )3 (D -- D~), # > 0, F(Q) ( ! ) 
J2 n+ 

where R,(f~', t)) is an atmosphere reflectance function) 7 

3.4. Problem D: the standard problem 

The transport equation will now be solved with the boundary conditions I(0, f~) =f0(f~),/~ < 0, 
I(H, t2)=fN (f~),/~ > 0, where f0 and f ,  are known functions. 

These problems are generally solved by iterative methods. ~g At each step of the iteration, Problem 
D is solved without the boundary conditions imposed in Problems A-C, since, in place of the 
unknown function, there is now a known function that has been determined in the previous step. 
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The mathematical foundations for this approach have been presented in Ref. 19. We note that 
Problem D can be reduced to zero boundary conditions, i.e. 

I (0 ,0 )=0 ,  p<O, I(H,f~)=O, p > 0 .  (17) 

Mathematical questions concerning the existence of solutions, their uniqueness and continuous 
dependence on the initial data have been studied in detail by many authors (see, for example, 
Refs. 4 and 5). Some questions connected with the existence and uniqueness of the solution of the 
transport equation in a plant canopy are considered in the Appendix. 

4. SEPARATION OF FIRST-ORDER SCATTERING 

4.1. Reasons for separation 

First-order scattering in some spectral regions is so significant that it is natural to separate this 
problem from the total analysis. Furthermore, our model of radiative transfer in the plant canopy, 
as described by the transport equation, does not allow for the sizes of the leaves (plates) with respect 
to the depth of the canopy (layer). However, the parameter x = lL/T , where l L is the length of the 
mean chord of the leaf and T the height of the canopy, plays a significamt role in the generation 
of the canopy hot spot. The canopy reflectance function in the region of the hot spot is very sensitive 
to variations of x. 9'12'2°'2~ It is impossible to consider this effect with the use of the transport 
equation (1). The mean value of the photon free path in Eq. (1) is direction-dependent and is defined 
only by the leaf orientation. In real vegetation canopies, the photon mean free path also depends 
on the direction of the photon before interaction. Actually, the stream of photons is not weakened 
by interactions in the backward direction and in the close-to-backward directions it is weakened 
less than by exp[-G(O)z/p]. 

This effect was allowed for in some papers ~2'2°'2~ by using a correction factor. We shall take it 
into account in first-order scattering by changing the extinction function. Why do we consider this 
phenomenon only for first-order scattering? The answer is that the transfer equation in a plate 
medium, where the size of the plate has a fixed meaning, is unknown. Secondly, the main 
contribution to the hot-spot effect is made by first-order scattering when a unidirectional stream 
of photons escapes from the source. For diffuse radiation or multiple scattering, the effect is 
averaged over all directions and does not play an essential role. 

4.2. Separation of the radiation stream that has not undergone any interactions 

We now consider Problem B2. We assume for simplicity that the solar radiation coming through 
the atmosphere has unit intensity. Combining Eqs. (1), (14), (15), and (16), we get 

f 
--p[OI(z, O)/dz] + G(O)I(z, D) = (1/re) F(O' ~ f~)I(r, O') dO', 

I(0 ,  0 )  = Ii~(O) + 6 ( 0  - Oo), p < 0, 

I(H, 0) = I q(fY, O)I(H, 0') dn', /~ > O, 
,J2n- 

(18) 

where q(O', O)= Rs(O', O)[p' I/re. We represent the solution of the boundary-value problem (18) 
by the sum of three components, viz. 

I = I~" + I~" + U, (19) 

where I~" and I~" are, respectively, the incident diffuse and direct radiation streams that have not 
undergone any interactions in the canopy, and I c is the intensity of the photons which have been 
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scattered one or more times in the canopy. It then follows from the boundary conditions that 

and 

-,u[[aZ~(r, Q)/c%] + G(Cl)Zy(r, f2) = 0, 

ry (0, n) = ZrJ (a), p < 0, zy (H, i-2) = s q(W, Q)Zl;n(Zf, 0’) do’, /I > 0, 
(20) 

Za- 

f-Z,(Q) exp[--G(Q)r/lp II, P < 0, 
zpn (7, cl) = 

q(R’, Ci)ZY(Zf, Cl’) dR’exp[-G(Q)(H - r)/p], ZA > 0. (21) 

For I;“, we obtain the problem 

-p[aZ;n(r, Q)/dt] + G(R)Z,““(r, 52) = 0, 

Z,““(O,Q)=6(R-R,), p <o, Zyyfz,R)= s q(R’, n)Z,U”(H, Cl’) dR’, ,U > 0, (22) 
2n- 

which we will divide into two problems. We take 

(23) 

where 

Z::,,(r, Q) = exp[-G(NIp IP@J - W, P < 0. (24) 

The function I{; satisfies the initial-value problem 

i 

- P [al:; (r, Q)/ar ] + G (fl)Z:; (r, 0) = 0, P >O, 

Z~::(H,R)=q(R,,R)exp[-G(~2,)HlI~lI, P ‘0, 
(25) 

the solution of which will be considered below. 
It only remains for us to define the boundary-value problem for the radiation that has interacted, 

I’. Taking into account Eqs. (20) and (22), it follows from Eqs. (18) and (19) that 

-,u[~?Z’(r, Q)/&] + G(R)Z’(z, Q) = (l/rc) 
s 

Z(Q’ + Q)Z’(z, Q’) dR’ + F(r, Q), 
4n 

Z’(0, L-2) = 0, p < 0, Z’(H, $2) = s q(R’, L2)Zc(H, 0’) dn’, p > 0. 
Zn- 

Here, 

where 

F(r, Q) = F, (r, Q) + FuP(r, Q) + Fdown (7, Q), 

F, (r, 0) = (l/n) 
s 

Z(Q’ -+ Q)Zy (r, U) dR’, 
4n 

Fup(~, a) = (l/n) s r(i2’ -+ i2)Zy (7, Q’) dn’, 
Zn+ 

Fdownk fi) = (l/R)r(~j_rR)exp[-G(~2,)z/I ill. 

4.3. Separation of first -order scattering 

We represent the solution of the specified problem by the sum of two components, i.e. 
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where I~ is the intensity of the photons which have been scattered only once in the canopy. Here, 
I~ satisfies the boundary-value problem 

{ -,u[aE (.~, n)/az] + G(f~)I~ (z, f~) = Fdo,,,. (z, t'l), 

I](0, f~)=0,  ~ < 0 ,  I~(H,f~)=0,  # > 0 .  
(26) 

The function I~ is the intensity of multiply-scattered photons that satisfy the problem 

Here, 

( -u[a Ih ( r ,  ta)/az] + G(f~)Ih(,r, f~) = ( l /n)  F(f~' ~ f~)lh(z, fl') dry + Q(z, fl), L 
I~(O, n)  = o, . < o, I~(H,  n )  = f~._ q(n', n)Ih(H, n') dn" + f s (n) ,  . > O. 

Q (~, n) = F, (,, n) + Fop (,, n) + EL (z, n), 

EL (V, n) = --xl I4, F (f~' ~ n)I] (z, fl') d•', 

Fs(z, f~) = f2 _ q(f~" f~)I~(H, n') df~'. 

(27) 

By analogy with Eq. (22), we split Eq. (26) into two initial-value problems as follows: 

and 

{ -u [az~(T,  n) l& ]  + G(n)Z~(z, n )  = Fdow.(T, n) ,  u < o, 
(28) 

I] (0, f~) = 0, kt < 0. 

{ -~[a/?(r, n)/&] + G(f~),r~(r, n) = Fdow.(~, n), /~ > 0 
(29) 

I~ (H,  f~) = 0, u > 0. 

We can easily obtain the solution of the initial-value problem (28) for p < O. It is 

f I/~01F(~0--, ~) [exp(-  G(~0)z/ [~l)  - exp(-G(~)v/ll~ 1)3,  tG(b-3T£F= G- o)t. t3 
I](~, f~) = zF(f~o--) f~) exp[ -  G(f~0)v/I/~01], 

zc I/~01 
f~ = f~o" 

(30) 

4.4. Consideration of the canopy hot-spot effect 
We begin with the two initial-value problems defined in Eqs. (25) and (29) that describe the 

movement of photons reflected from the soil and leaves in the upward directions. In Eq. (25), the 
unidirectional radiation has descreased from the upper to the lower boundary (soil) by 
exp[-G(f~o)H/[#ol]. The portion q(f~0, f~) is reflected from the soil and escapes into a unit solid 
angle about the direction ~. The function G (~) is defined by Eq. (2) and is placed before the second 
term in the transport equation; it characterizes the extinction of radiation in the direction fl. For 
simplicity, we assume that UL(Z)= UL = constant, i.e., the plates are uniformly distributed with 
respect to depth. Therefore, extinction applies only for directions that are far from fl 0. In real plant 
canopies, the leaves have a fixed size and the value e x p [ - G  (D0)H/[/~0l] denotes the probability that 
there is a gap in the direction f~0 through which the soil can be seen. It is evident that if a photon 
has come through the gap, it does directly back unweakened to the upper boundary with unit 
probability. Since the leaves have a finite size, this probability decreases with the distance from f~0. 
Thus, the directions in which the photon flies into and out of the canopy (after reflection from the 
soil) are not independent. Nilson and Kuusk 12' 13 have considered the correlation function rn0,n(H) 
characterizing the probability that a point on the soil illuminated in the direction f/0 would be seen 
in the direction fl. They have found that rn0.n depends on x, i.e., on the relation between the length 
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of the average chord and the height of the canopy. Approximating this function by the exponent 
and considering the results of Refs. 12 and 13, we obtain the new coefficient of extinction 

y(z, no, n)  = G(n){1 - ~ exp[-C(Do,  n)z/~H]}, # > 0, (31) 

where A0 = G(DO)/[p0[, A = G(n)/[p{ and C(DO, n)  = (po 2+ p-2 + 2(n0-n)/lp0u [)1/2 For 
n = - D O ,  back reflection occurs and n - D O = - 1 .  Hence, it follows that c(DO, n ) = 0  and 
y(z, DO, n ) =  0, which indicates the absence of extinction. 

Taking into account Eq. (31), the initial-value problem (25) is transformed into 

{ --#[c~I~p(Z, n)/Oz] + y(z, D o, n)I~p(Z, n)  = o, u > o, 

I~,(H, n)  = q(DO, n)  exp[-G(DO)H/lUol], P > O. 

Similar reasoning reduces the initial-value problem (29) to 

{ -U[0I~(x, n)/Ox] + y(z, DO, n)l](x, n)  = Fdown(T, n), u > 0, 

11 (H, n)  = O, U > O. 

It is easy to obtain the solutions for the last two problems as follows: 

[ f: ] IU~,(z ,n)=I(H,f~)exp - ( l / u )  7 ((, Do , n)  d( , # >0 ,  (32) 

f: [ f: ] I ~ ( r , n ) = ( 1 / u )  Faow. (Z ', n)  exp - ( l / u )  y(¢,Do,n)d¢ dz', u >0 ,  (33) 

where 

f< (I /u)  y(~, no, n)  d[ = G(n)(z '  - z)lu 

- [x//-~oAoA~H/C(DO, n)]{exp[-C(DO, n)T/•H] -- exp[--C(DO, n)z'/~H]}. 

The complete solution is the sum of the components, viz. 

z = I? o + z~" + 11 + / t , ,  

where I~" is defined by the equality (21), I~" by Eqs. (23), (24) and (32), I~ by Eqs. (30) and (33), 
and I~  is the solution of the boundary-value problem (27). This problem may be solved by using 
the discrete ordinates method. 7')s 

5. U N I F O R M  A Z I M U T H A L  DISTRIBUTION FOR THE LEAF NORMALS 

We assume that the polar and azimuthal angles of the distribution of the leaf normals are 
independent and the distribution in the azimuth is uniform. Then, ge(nL)~-~ gL(~tL) and 7̀ s 

fo' [ fo" ] G(D) = G(U) = gL(UL) (1/2•) In'fiLl dq~L dUe- 

The second integral has been evaluated in Refs. 6 and 7. In addition to experimental data, there 
exist some theoretical models for the function gL for various forms of the canopy. Examples are 
a trigonometric representation:: 

gL(0L) = (a 4- b COS 20 L 4- C COS 40L)/sin 0L, 0 L = COS-I(UL), a, b, c = constant, 

and the statistical distributions: gL(0L)"~ fl(U, V), a beta distribution 23 and gL(0L),~e(v,(), an 
elliptical distribution. )3 
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In this case, if Eq. (10) holds, we can show that the phase function F depends only on the 
difference between the azimuthal angles of the incident and reflected rays; however, it does not 
depend on each ray separately, i.e. 24 

F (f~' --, D) = F (#, # ' ,  tk - q~ '), (34) 

and 
F(p , / z ' ,  x )  = F(p ,  It', - x )  = F(#,  # ' ,  x + 2n). (35) 

The indicated procedure allows us to reduce the dimensions of  the problem significantly for 
numerical solution by using discrete ordinates. Furthermore, the symmetry properties, toge ther  
with the conditions (34) and (35), allow us to use the "method of  circulant matrix",~8 which, because 
of the dependence of  the phase function on the differences of  azimuthal angles and its periodicity 
with respect to this argument, transfers a problem of  dimension N M  (where N is the number of  
directions with respect to # and M is the number with respect to (p) into M problems of dimension 
of  N (see Ref. 18 for detail). 

6. N U M E R I C A L  R E S U L T S  AND D IS CU S S IO N  

We will now illustrate the influence of  various model parameters on the scattering phase function 
and canopy bidirectional reflectance. 

From the definition (9), it follows that the phase function F (tT ~ ~)  represents the sum of the 
diffuse and specular components, each of  which depends on the plate orientation. The diffuse 
component also depends on the reflectivity rL and on the transmissivity tL for each separate plate, 
whereas the specular component is described by the wax refractive index n and the extinction 
parameter k. 

In Fig.  1, we show three vertical cross-sections of  the phase function (~b = (p' and ~b = (p' + 180 °, 
(p = (p' + 45 ° and ~b = q~' + 225 °, (p = 4 '  + 90° and ~ = ~b' + 270 °) to represent the planophile 
canopy (mainly horizontal leaves) and erectophile canopy (mainly vertical leaves) with ~ ' =  - 0 . 5  
( 0 ' =  120°). In this case, the specular component is missing (n = 1.0) and the phase functions at 
# < 0 and # > 0 are similar. An increase in scattering in the near-nadir directions for planophile 
leaves and a decrease for the erectophile leaves can he explained by the Lambertian distribution 
of  reflectance from their surfaces. Symmetry with respect to the nadir occurs only for the 
cross-sect ions ~b = ~b' + 90 ° and  ~b = 4)' + 270 °. 

Figure 2 illustrates the role of  the parameters n and k in the phase function. The cross-sections 
of  the phase function are presented in the principal plane ~ = ~b', (p = ~b' + 180 ° at # '  = - x / ~ / 2  
( 0 ' =  150 °) for the erectophile canopy. Figure 2(a) shows the phase function for p < 0 (upward 

P(/~, @', , l~-~'  ) 

- 0 . 0 4  

- O.O2 

I 1 I I I I 1 
90 60 30 0 30 60 90 

8=cos -~ 

Fig. 1. The scattering phase function for various leaf-angle distributions (1-3--erectophile; 4-6 - -  
planophile). Curves 1 and 4 correspond to the cross-sections 0 = q~' and ~ = ~' + 180°; curves 2 and 5 
refer to ~ = ~b' + 45 ° and 0 = ~' + 225°; curves 3 and 6 refer to ~ = ~b' + 90 ° and ~b = ~b' + 270 °. Here, 

r L = t L = 0 . 0 4 ,  n = 1.0,  ~ '  = - - 0 . 5 .  
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F (t~,t2, ~- #') 
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• / .., 
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Fig. 2. The scattering phase function for the erectophile canopy at I t '=  -x/~/2. The corresponding 
cross-section is 4, =4, '  and 4, = 4 , ' +  180°; Fig. 2(a) refers to It <0  and Fig. 2(b) to It >0. Curve h 
n = 1.0, r L = 0.04, t L = 0.0; curve 2: n = 1.0, r L = t L = 0.04; curves 3-5: n = 1.4, r L = t L = 0.04; curve 3: 

k = 0.6; curve 4: k = 0.3; curve 5: k = 0.0. 

sca t ter ing  photons) .  Curve  1 represents  only  reflection ( r  L = 0.04, l L = 0 . 0 )  and  curve 2 represents  
reflection and  t ransmiss ion  (rL = tL = 0.04). I t  is obvious  tha t  their  difference co r r e sponds  to the 
con t r i bu t ion  o f  the t r ansmi t t ance  tha t  has a m a x i m u m  a t /~  < 0 and  ~b = 4,'. 

Curves  3, 4, and  5 deno te  the con t r ibu t ions  o f  the specular  c o m p o n e n t  (n = 1.4) for  different  
coefficients k, which charac te r ize  the presence (k > 0) and  d imens ions  o f  the fibre on the leaf  
surface. The  ext inc t ion  funct ion  for  the specular  c o m p o n e n t  is ca lcu la ted  f rom '3 

K(k, ~' )  --- e x p [ - 2 k  tan(0t ') /n],  ~ '  = c o s - l ( D ' ' Q L ) .  (36) 

It  is ev ident  tha t  a decrease  in k increases the con t r ibu t ion  o f  the specular  componen t .  F o r  an 
erec tophi le  c a n o p y  at  # > 0, this resul t  is val id  only  for  large reflection angles [Fig. 2(b)]. A n  
increase  in the phase  funct ion  with  decreas ing  k is observed  for  sca t ter ing  in the d o w n w a r d  
d i rec t ion  [Fig. 2(a)]. F o r  0 - - 3 0  ° and  4, = q~' (scat ter ing a long  the leaf) ,  a deep  m i n i m u m  is 
observed  for  k > 0. However ,  this m i n i m u m  d i sappea r s  with decreas ing  k. The  presence o f  
sca t ter ing  m a x i m a  for  bo th  d i rec t ions  at  0 = 30 ° is due  to s t rong specular  reflection (especial ly,  in 
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the case of the absence of  fibre, curve 5) in the plane of the incident ray in the directions close 
to the leaf surface. 

In the following figures, we represent reflectance functions of  the plant canopy, which have been 
calculated from 

where 

R (D.o, ~)  = 7rI(O, ta)lF, 

F = I#ol + f=._ z~(~')l#'l dl)'.  

Here, I is the solution of  boundary-value problem (18), Q0 "" (#0, 40) the direction of the direct solar 
radiation, and Io the diffuse component. In the following numerical results, we assume that the 
sky was uniformly bright, 6 i.e. I o ( ~ ) =  constant. The contribution of  the direct radiation is 
expressed by fl = [ #0[/F, which characterizes the part of  the direct radiation in the total incident 
flux density. 

The reflectance functions R(fl0, ~)  for various leaf-angle distributions in the principal plane 
(4 = ~b0, ~b = ~b 0 + 180°), are presented in Fig. 3. By increasing the average leaf-inclination angle, 
the reflectance function increases for all view directions. Here, the effect of the canopy hot spot 
also increases and leads to asymmetry of  the bidirectional reflectance relative to the nadir. There 
are three orientations: plagiophile (leaves mostly inclined at 45°), uniform [gL(0r)= 2/1r] and 
extremophile (nearly horizontal and vertical leaves); these have the same average inclination angle 
(EOL=45 °) but different dispersions (4.6, 11.8 and 18.9, respectively). There are significant 
differences in the reflectance functions for ~ = ~b0 + 180 ° within the region around 0 = 90 ° - EOL. 
In Refs. 9 and 10, the same effect has been observed in calculations using the Monte Carlo method. 
On the other hand, for ~b = 40 and large view directions, the reflection from the extremophile leaves 
is less than from the plagiophile. It is caused by the Lambertian law of  reflectance from the leaf 
surface at 00 = 150 °. 

Figure 4 illustrates the influence of  the parameter characterizing the leaf dimensions on the 
reflectance function R (Q0, fl). For  the planophile canopy at 00 = 120 ° (#0 = - 0 . 5 )  in the principal 
plane (~b = ~0, ~ = 40 + 180°), there are four reflectance functions, from x = 0.0 (infinitesimally 
small leaves) up to x = 0.5 (large leaves with a diameter exceeding 1 m). The relation between the 
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funct ion o f  the p lant  canopy 
R ( f l o ,  l ' l)  f o r  v a r i o u s  l e a f - a n g l e  d i s t r i b u t i o n s .  C u r v e  1 - - -e rec -  
t o p h i l e ;  c u r v e  2 - - s p h e r i c a l ;  c u r v e  3 - - p l a g i o p h i l e ;  c u r v e  
4 - - u n i f o r m ;  c u r v e  5 - - e x t r e m o p h i l e ;  c u r v e  6 - - p l a n o p h i l e .  
H e r e ,  r L = t L = 0 .04 ,  n = l .O,  H = 3 .0 ,  x = 0 . 0 8 ,  R s = 0 .0 ,  

fl = 1 , 0 0 =  150  ° , t~  = ~b 0. 
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F i g .  4. T h e  r e f l e c t a n c e  f u n c t i o n  o f  t h e  p l a n t  c a n o p y  
R ( f l 0 ,  Q )  f o r  v a r i o u s  l e a f  sizes.  C u r v e  1 - - K  = 0 .00 ;  c u r v e  
2 - - r  = 0 .01 ;  c u r v e  3 - - x  = 0 .08 ;  c u r v e  4 - - r  = 0 .50 .  H e r e ,  
r E = l L = 0 . 0 4 ,  n = 1.0,  H = 3 .0 ,  r = 0 .08 ,  R~ = 0 .0 ,  fl = 1, 

00 = 120  °, ~b = ~b 0 . 

~ = (ibo + 180 ° 
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o 

Fig. 5. Comparison o f  the reflectance functions calculated 
by the Monte  Car lo  method  (curves 1 and 3) with values 
obtained by the discrete ordinates method,  allowing for the 
canopy  hot -spot  effect (curves 2 and 4). Here r L = t L = 
0.04,~/ = 1.0, H = 3.0, K = 0.08, R s = 0.0, fl = l,~b = 
~b0, 0o = 150 ° (curves 1 and 2), 0o = 120 ° (curves 3 and 4). 

The leaf orientat ion is spherical. 

R ( ~,0,,0, ) 

--0.6 

--0.2 

I I I I ~ .... I 
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8 
Fig. 6. Compar i son  of  the calculated reflectance functions 
with measured data for the maize canopy in the near-i.r. 
spectral region ( + ) .  Here, r L = t L = 0.46, n = 1.0, H = 4.0, 
~c = 0.08, R s = 0.2, fl = 0.8, 00 = t40 °, 40 = 100°. Curve l - -  
~b=~b 0 and q~=~bo+180°;  curve 2 - - ~ b = ~ 0 - 4 5  ° and 
~b =~b0+  135°; curve 3--@ = ~b0-90  ° and  ~b =~bo+90° ;  

crosses 4--~b = 0. The leaf orientation is spherical. 

parameter x, the average round leaf diameter dE and the canopy height has been found by Kuusk 
and Nilson ~3 for horizontal leaves, namely, x = (n/4)(dL/H). For spherically oriented leaves, 
Kuusk has obtained the equality x - (n/4)~(dL/H). With an increase in the relative leaf size, the 
bidirectional reflectance function in the region of the hot spot increases and the asymmetry relative 
to the nadir direction increases. 

We now consider two models: the model of a plant canopy whose radiative regime is described 
by the transport equation (model 1) and the geometrical Ross-Marshak model, the radiative regime 
of which is calculated by the Monte Carlo method 9' l0 (model 2). We propose for model 2 that 
stems are absent, the plants are planted in check-rows and the azimuthal angle between the 
successive leaves on the genetic spiral is 120 °, with the average number of round leaves within a 
plant being 4. 

In Fig. 5, we show four curves. Curves 1 and 2 refer to 00 = 150 ° and curves 3 and 4 illustrate 
00 = t20 °, The curves calculated according to models 1 and 2 for 00 = 120 ° practically coincide. 
Under a high sun (at 00 = 150°), the bidirectional reflectance for model 1 is greater than the 
bidirectional reflectance for model 2. This result may hold because of the following reasons. In the 
geometrical model, the phytoelements are distributed more regularly. In such a canopy, the 
probability to see the black soil (R~ = 0) at small view directions is greater than with randomly 
distributed leaves (model 1). By increasing the view angles, the difference between the regular and 
random canopies decreases as the mean photon free path grows longer and the gaps in the foliage 
become invisible. Therefore, curves 3 and 4 are similar to each other, whereas there are essential 
differences between curves 1 and 2. 

We now compare our results with experimental data on the reflectance in the maize canopy 
obtained by Ranson and Bieh125 (see also Refs. 7 and 8). There is good agreement between our 
data and experimental results (Fig. 6). The greatest difference can be seen in the principal plane, 
where the hot-spot effect is noticeable. The soil reflectance follows Lambert's law: 
q(~', Q) = Rst #" l /rc. 

Figure 7 is an illustration of the three-dimensional Cartesian plot of the reflectance function 
R(Q0, i2) in the infrared spectral region for the uniform leaf-angle distribution (gL(0L)= 2/n), 
where the specular component is also considered. The extinction of the specular component has 
been calculated by using Eq. (36). 
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Fig, 7. The three-dimensional Cartesian reflectance function R(f~0, ~) is shown. Here, r L = 0 .5 ,  tL = 0.35, 
n = 1.4, k = 0.3, H = 3.0, r = 0.08, R s = 0.0, fl = 1, 00 = 150 °, ~b 0 = 90 °. The leaf orientation is uniform. 

7. C O N C L U S I O N S  

We supplement  the t ranspor t  equat ion in the vegetation canopy  considered by Shultis and 
Myneni  7 by including the specular componen t  in the scattering phase function.I°' 13.14 The separat ion 
o f  first-order scattering allows us to consider the leaf size in the transfer equat ion for a plate 
medium. It  has led to the format ion  o f  the canopy  hot -spot  effect. I t  is very sensitive to variations 
o f  the leaf sizes and orientat ions (Figs. 3 and 4). Therefore,  it is the mos t  informative region for  
remote  sensing problems. 

Compar i son  o f  the present model  with much more  complicated Monte  Carlo  model  (Fig. 5) and 
with experimental da ta  on real canopies (Fig. 6) shows good  agreement.  

Fur ther  development  o f  the present model  involves generalization to the three-dimensional case 
and inversion o f  geometrical  and optical parameters  by using data  on canopy  reflectance. 

Acknowledgement--I am indebted to Yu. Knyazikhin and A. Kuusk for valuable discussions, many useful suggestions and 
critical remarks, which led to improvement of this paper. 
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APPENDIX 

Solvability of  the Transport Equation for the Plant Canopy 

We now consider the transport equation with a non-zero absolute term [e.g., the equation for 
the boundary-value problem (27) with the standard boundary conditions (17)]. We use the operator 
notation 

LI  = SI  + Ql. (A1) 

Here, L is the differential operator that satisfies the relation 

(LI)(z, f2) = -[#/G(f2)] [dI(r, f2)/Oz] + l(v, fl). 

An integral operator is denoted by S such that the following relation is satisfied: 

(SI)(z, fl) = [1/na(•)] ( I'(fV--. fl)I(z, fl') df~'. 
.14 7t 

Next, we define the function Q1 = Q/G. We also introduce 

{ fo ;4 } W =  q~(v, f~): G(fV)I q'(v', D) I dry dz' < 
r~ 

and 

D(L)={q~(T,D):q~(O,f~)=O, # < 0 ,  ~ ( H , f ~ ) = 0 ,  # > 0 ,  LqB•W}. 

It is known 4.19 that (i) D(L)  ~ W and for each function f • W there always exists a sequence from 
D(L)  that converges to f ;  the equation LI  = f h a s  a unique solution I • D(L)  for e a c h f  • W, i.e., 
the inverse operator L- I  exists such that I = L -  ~f. 

We denote the r.h.s, of Eq. (A1) by 

f = SI  + Q1. (A2) 

After solving the boundary-value problem LI  = f ,  we obtain 

I = L - i f .  (A3) 

Substituting Eq. (A2) into Eq. (A3) we obtain the integral equation 

I = L - i S 1  + L-IQi .  (A4) 

Q.S.R.T. 42/6--M 
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Equation (A4) may be studied by using the Banach theorem for an operator equation of the second 
kind. 26 According to this theorem, both the existence and uniqueness of the solution from the 
inequality 

Here, II ~ II is given by 

I I t - ' a ~ l l ~ q l l ~ l l ,  q < l ,  for any ~ e W  (A5) 

II • II = G ( n )  l ~ ( 3 ,  n) ldn dr. 

It may be proved that the inequality (A5) holds for q < 2, where 

esssup (l/n) l" F ( f - + f Y ) d f ' / G ( f ) ,  f ~ ( # , ~ ) . t  (A6) 2= 

Hence, Eq. (A4) has a unique solution, which may be expressed as a Neiman series as follows: 

I = L-IQi + L-ISL-IQI  + L-ISL-ISL-IQ1 + . .  •. 

If Q~(z, f )  >/0, then the (L-tS)"L-~Q~, n = 0, 1, 2 . . . .  are positive. Using Eqs. (12) and (13) in Eq. 
(A6), we obtain 

f2 (3, f~L) I f~" f~LI b ( ~ ' ) , )  gL fL dfL 
2 = e s s s u p [ ~  G i ( f ) / G ( f ) l = e s s s u  p '  ~+ [, <~1, 

gL(Z, fL)lf't~LI df~L 
J2 x +  

where 

b ( f ,  fL)  = (1/n) I [ fy" fL I C( f "  fL)  dO" + K(k, f~" f~L)F(n, f~" 
im 

OL ), 
J4 

J'rL(Ct'), ~ '  < 0, 
c(c t ' )  

~.tL(~'), ~t~t' > 0, 

= ( ~  f L ) ,  ~'  = (f~'" f~L). 

The condition 2 ~< 1 guarantees the existence and uniqueness of the solution of the transport 
equation in the plant canopy. For the special case rL(~) = rL, tL(~) = tL, we obtain 

rL + tL + max K(k, ~)F(n, or) <~ 1. 
0~<ct~<l 

]/, 
?Here, ess suplx(t)l = lim ]x(t)ldt . 

t • T p~ *  


